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1 Introduction

Diamond (1965) provides a classic analysis of public debt in dynamically inef-

�cient economies. His well-known results gain real-world signi�cance insofar as

actual economies become dynamically ine¢ cient in the absence of public debt.

The general consensus seems to be that this is not the case: empirically the rate

of return on capital appears to exceed the rate of growth.

The empirical argument has two potential weaknesses. To ascertain the need

for �scal policy and public debt one would need to evaluate the rate of return in

a state without public debt; it is not su¢ cient to show that dynamic e¢ ciency

may hold if the evidence applies to an economy with signi�cant amounts of

public debt. Second, the standard e¢ ciency criterion �that the rate of return

exceed the growth rate � is based on the identi�cation of the rate of return

with the marginal product of capital. This identi�cation breaks down under

imperfect competition. Dynamic ine¢ ciency, as a result, may be empirically

relevant.

Our analysis is motivated by the recent focus on public debt in policy de-

bates. Some of the striking �ndings in Reinhart and Rogo¤ (2010) have been

discredited (Herndon et al. 2013) and claims that high debt reduces economic

growth have been challenged by a number of studies (e.g. Irons and Bivens

(2010), Dube (2013), Basu (2013)). But the challenges have been largely empir-

ical. Our analysis contributes a theoretical perspective. We �nd a relationship

between debt and growth rates, but the causal link unambiguously runs from

growth to debt: a low growth rate generates a high steady-growth ratio of debt

to income if �scal policy is used to avoid dynamic ine¢ ciency and maintain an

optimal capital intensity. The analysis also shows that austerity policies have

paradoxical e¤ects: reductions in government consumption and in entitlement

programs for the old generation raise the long-run debt ratio.

OLG models with imperfect competition have been developed by, among

others, d�Aspremont et al. (1995), Pagano (1990) and Jacobsen and Schultz

(1994). Like our analysis in this paper, these models examine the potential

usefulness of �scal policy. But this similarity masks fundamental di¤erences

in the structure of the models and the nature of the �scal e¤ects. Assuming

Cournot competition, d�Aspremont et al. show that �scal policy can be used to

in�uence the equilibrium markup which �along with an elastic labor supply �

determines equilibrium employment; the model has no capital and no dynamic

ine¢ ciency, and the government balances its budget in each period. The details
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are di¤erent in Pagano and Jacobsen and Schultz, but the �scal e¤ects run

through changes in competition and market power in these papers too. By

contrast, the markup is constant in our setting, and we treat the labor supply

as inelastic; our focus is on dynamic e¢ ciency and the dynamics of public debt.1

Public debt dynamics have been examined in an OLG setting by Chalk

(2000). Assuming a constant primary de�cit per worker, he �nds that even

if the economy is dynamically ine¢ cient when public debt is zero, a constant

primary de�cit may be unsustainable. Moreover, in those cases where a primary

de�cit is sustainable, convergence is to a steady growth path that is dynamically

ine¢ cient. These results invite several questions. Why would a government

want to pursue policies of this kind? Why focus on trajectories that keep a

constant primary de�cit? Economic analysis of monetary policy typically looks

for optimal policies (or policy rules), given some welfare function and a model

of how the economy operates. Our analysis of �scal policy is in a similar spirit.2

Section 2 presents the basic model with imperfect competition. Taxation

and public debt are added in section 3. Section 4 discusses implications of the

analysis, and section 5 o¤ers some concluding remarks.

2 An OLG model with imperfect competition

Production There is a continuum of young agents indexed by j with j 2
[0; Lt]. The population grows at the rate n; Lt+1 = (1 + n)Lt. Agents live for

two periods: they work in the �rst period and live o¤ their savings in the second.

In addition to a labor endowment, each agent has the know-how to produce

a particular intermediate good using capital and labor. A CES production

function describes the production of the intermediate goods yjt:

yjt = [�(�kjt)

 + (1� �)(�ljt)
 ]1=
 ; 0 < � < 1; 
 < 1 (1)

where kjt and ljt denote the inputs of capital and labor in the production of

good j at time t:
1Bohn (2009) examines �scal policy in relation to another source of market failure: ine¢ -

ciencies associated with productivity shocks and intergenerational risk. He assumes a balanced
budget, and leaves out imperfect competition and problems of dynamic ine¢ ciency. In this
paper we ignore stochastic shocks and risk.

2Although Keynesian aggregate demand problems are excluded in this paper, the approach
has a¢ nities with the Keynesian literature on �functional �nance� (Lerner 1943). Recent
contributions to this literature include Schlicht (2006), Godley and Lavoie (2007), Arestis and
Sawyer (2010), Kregel (2010), Palley (2010), Ryoo and Skott (2013), and Costa Lima et al.
(2013).
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Intermediate goods are used to produce �nal output (Yt):

Yt =

"
At

Z Lt

0

y
1� 1

"
jt dj

# "
"�1

; " > 1 (2)

where " is the elasticity of substitution among intermediate goods. A growing

population �a growing number of intermediate inputs �would be a source of

productivity increases and growth in per capita income if the multiplicative term

At were constant. Important as they may be, these issues are not the concerns

of this paper; to simplify, we therefore assume that

At = L
� 1
"

t (3)

With this speci�cation, population growth will have no direct e¤ect on produc-

tivity.

The �nal good can be used for consumption or transformed (costlessly) into

capital for use in the production of intermediate goods. There is perfect com-

petition in the �nal goods market and �rms maximize pro�ts,

max
yjt

ptYt �
Z Lt

0

pjtyjtdj (4)

where pt and pjt are the prices of �nal output and intermediate goods.

The �rst-order condition yields

yjt
y�t

=

�
pjt
p�t

��"
; 8j; � 2 [0; Lt] (5)

which, along with (2) and a zero-pro�t condition, implies that

yjt =

�
pjt
pt

��"
Yt
Lt

(6)

and

pt =

"
1

Lt

Z Lt

0

p1�"jt dj

# 1
1�"

(7)

Using the �nal good as numeraire, we assume pt = 1 for all t.

Intermediate good producers maximize pro�ts subject to the isoelastic de-
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mand function (6) and the production function (1):

max
kjt; ljt

pjtyjt � wtljt � (rt + �)kjt (8)

s:t: yjt = [�(�kjt)

 + (1� �)(�ljt)
 ]1=


pjt = pt

�
Yt
Lt

�1="
y
�1="
jt

where wt, rt and � are the real wage, the real interest rate and the rate of capital

depreciation. The �rst-order conditions give a mark-up equation:

pjt =
"

"� 1ct (9)

where ct represents the unit cost:

ct �
�
�

1
1�
 �



1�
 (rt + �)

�

1�
 + (1� �)

1
1�
 �



1�
w

�

1�

t

�� 1�




(10)

The unit cost is the same for all input producers. Thus, pjt is the same for all

j, and, using (7) and (9),

1 = pt = pjt =
"

"� 1ct (11)

Relative factor demands are given by

kjt =

�
�

1� �
�


�

wt

(rt + �)

� 1
1�


ljt (12)

and integrating (12) over [0; Lt], the aggregate capital stock Kt satis�es

Kt =

�
�

1� �
�


�

wt

(rt + �)

� 1
1�


Lt (13)

Equations (10) and (11) give us a factor-price frontier; we can write the real

wage as a function of the interest rate:

wt = (1� �)
1

 �

(�
"

"� 1

� 

1�


� �
1

1�
 �



1�
 (rt + �)
�

1�


)� 1�




� w(rt) (14)
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Saving There is full employment and we take the labor supply to be inelastic.3

Normalizing the supply of an individual worker to one, the budget constraint is

given by

c1;t +
1

1 + rt+1
c2;t+1 = wt + �t (15)

where c1;t and c2;t+1 are the levels of consumption when the agent is young and

old; �t is the agent�s pro�ts from production of an intermediate good. Using

(9)-(12), we have

�t =
1

"� 1
w(rt)

�(rt)
� �(rt) (16)

where �(rt) is the share of labor in unit cost:

�(rt) � wtLt
wtLt + (rt + �)Kt

=
(1� �)

1
1�
 �



1�
w(rt)

�

1�


(1� �)
1

1�
 �



1�
w(rt)
�

1�
 + �

1
1�
 �



1�
 (rt + �)

�

1�


(17)

The utility function for a young agent in period t is commonly speci�ed using

a general CIES form,

Ut =
c1��1;t � 1
1� � +

1

1 + �

c1��2;t+1 � 1
1� � ; � � 0 (18)

where � and � are the inverse of the intertemporal elasticity of substitution and

the discount rate. Using this speci�cation, the maximization problem yields an

expression for optimal consumption:

c1;t = (1� st)(wt + �t) (19)

where the young generation�s saving rate st can be written

st =
[(1 + rt+1)]

(1��)=�

(1 + �)1=� + [(1 + rt+1)](1��)=�
(20)

In the logarithmic case (� ! 1 and Ut = log c1;t+ 1
1+� log c2;t+1) this expression

simpli�es to

st = s =
1

2 + �
(21)

Given the purpose of this paper � to examine complications from imperfect

3Lopez-Garcia (2008) provides an extension with an endogenous labor supply.
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competition �we keep the saving side simple and focus on the logarithmic case

(� ! 1; st = s).

The capital stock in period t + 1 is determined by the young generation�s

saving in period t (St):

Kt+1 = St = s(wt + �t)Lt (22)

Using (14) and (16), equation (22) can be written as a �rst-order di¤erence

equation of the interest rate.

�
�

1� �
�


�

w(rt+1)

(rt+1 + �)

� 1
1�


(1 + n) = s[w(rt) + �(rt)] (23)

Equation (23) fully determines the trajectory of the interest rate.

Steady states In a steady state we have rt = rt+1 = r for all t and, substi-

tuting for w(r) and �(r), equation (23) can be re-written

1 + n = s(w + �)L=K

= s

"�
"

"� 1

� 1
1�


��
1

1�
 ��



1�
 (r + �)
1

1�
 � (r + �)
#

(24)

As shown in Appendix A,

1. in the case of 0 � 
 < 1, equation (24) has a unique root r 2 (��;1):
This �xed point is stable.

2. in the case of 
 < 0, equation (24) has two distinct roots r 2 (��;1) if �
is su¢ ciently large (given the values of the other parameters). Intuitively,

if � is too low, it becomes impossible to accumulate capital at the required

rate n for any non-negative level of consumption, and the equation has

no solution (cf. the Leontief example below). The smaller root for r

is (locally) stable; the larger root is unstable. The large solution may

require a negative real wage rate and thus may not be meaningful, even

disregarding stability questions.

The term on the right-hand side of (24) �(w+�)L=K �represents the young

agents� income normalized by the capital stock. This income-capital ratio is

increasing in the interest rate in the neighborhood of stable steady states. This

property can be used for comparative statics. First, an increase in the growth
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rate n or a fall in the saving rate s (a rise in the discount rate �) requires an

increase in the income-capital ratio in order to maintain a steady state. Thus,

the interest rate has to go up. The equilibrium interest rate, second, is inversely

related to the degree of market power. An increase in the mark-up factor �a

reduction in the elasticity of substitution among intermediate goods (") �raises

the income-capital ratio for a given interest rate; the real interest rate therefore

needs to be lowered to keep the income-capital ratio constant at (1 + n)=s.

Example: the Leontief case If 
 ! �1, the production function converges
to the Leontief form,

yjt = minf�kjt; �ljtg (25)

In order for full-employment growth to be technically feasible, the aggregate

capital stock must grow at least as fast as the labor force when all output is

being invested. Algebraically,

�Kt � Yt � (n+ �)Kt

or

� � n+ � (26)

This technical feasibility condition is necessary but not su¢ cient. With a loga-

rithmic utility function and a saving rate of 1=(2 + �), the parameters need to

satisfy the more restrictive condition

sYt =
Yt
2 + �

� Kt+1 = (1 + n)Kt �
1 + n

�
Yt

or

� � (1 + n)(2 + �) (27)

The economy has two steady growth paths. There is a full-utilization path with

�kjt = �ljt = yjt, Kt = (�=�)Lt and ct = wt
� + rt+�

� . Along this path the

pricing equation (11) takes the form 1 = pt = pjt =
"
"�1

�
wt
� +

rt+�
�

�
; the real

wage and the amount of pro�ts are given by wt = �
�
1� 1

"

�
�� rt+�� and �t = �

" ,

respectively. Using these expressions, equation (22) can be written as

Kt+1

Lt
=

Kt+1

Lt+1
(1 + n)

=
�

�
(1 + n) = s(wt + �t) = s

�
�� �rt + �

�

�
(28)

7



Solving (28) for the rate of interest and substituting the result back into the

factor-price frontier, we have:4

r + � = � � (2 + �)(1 + n) > 0 (29)

w =
�(2 + �)(1 + n)

�
� �
"

(30)

The steady growth path described by equations (29)-(30) is dynamically e¢ -

cient: the net marginal product associated with a reduction in the capital-labor

ratio exceeds the growth in the labor force (� � � > n). This high-interest

path is unstable, however. Starting from the e¢ cient path, a positive shock

to w raises saving and capital intensity increases in the next period to give

Kt+1=Lt+1 > �=�. The young workers� income (the wage rate plus pro�ts)

then rises to � in subsequent periods5 , and the economy will be following a

steady growth path with excess capacity:

K

L
=

�

(2 + �)(1 + n)
>
�

�
(31)

This steady-growth path is dynamically ine¢ cient; the net marginal product

of capital is equal to �� < n; consumption could be increased by reducing

investment (eliminating the excess capacity) and having each young generation

use some of its saving to �nance consumption for the old generation.

Dynamic e¢ ciency Returning to the general case (�1 < 
 � 1); the gen-
eral condition for e¢ ciency is for the net marginal product of capital to exceed

the growth rate of the labor force. Under perfect competition, this criterion can

be re-stated as r > n: The introduction of imperfect competition modi�es the

e¢ ciency criterion. Imperfect competition, �rst, drives a wedge between the

marginal product of capital and the interest rate. With our speci�cation, the

marginal product of capital equals 1
c (r + �) =

"
"�1 (r + �), and the e¢ ciency

criterion can be written
"

"� 1(r + �)� � > n

4The solution for w becomes negative and non-meaningful if the monopoly rents are too
large (a small ") and/or the capital productivity is too large (a large �). This is quite intuitive:
under these conditions the saving decisions of the young generation will generate a growth
rate of the capital stock that exceeds n even when the wage rate is zero.

5The wage rate and the amount of pro�ts will be wt = �
�
1� 1

"

�
and �t = �

"
with

wt + �t = �.
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or

r >

�
"� 1
"

�
(n+ �)� � (32)

The wedge implies that r > n is su¢ cient but not necessary for dynamic e¢ -

ciency; imperfect competition relaxes the condition for dynamic e¢ ciency for

any given value of r. But the mark-up factor "=(" � 1) in�uences r. More
speci�cally, an increase in the markup decreases r in stable steady states and,

using equation (24), it is readily seen that a decrease in " (corresponding to

a rise in the markup) must also lead to a decline in the equilibrium value of

the marginal product of capital.6 Thus, an increase in market power tends to

tighten the condition for dynamic e¢ ciency.

More importantly, biases arise if the marginal product of capital is being

evaluated by looking at the ratio of gross pro�ts (pY � wL) to capital: under
imperfect competition some of the pro�ts are monopoly rents that have no

relation to marginal productivity.7 The bias is particularly clear in the simple

Leontief case: producers with excess capacity receive positive gross pro�ts even

though the gross marginal product is zero. More generally, using the model in

6Re-stating equation (24) we have

1 + n = s

"�
"

"� 1

� 1
1�


�
� 1
1�
 �

� 

1�
 (r + �)

1
1�
 � (r + �)

#
By the implicit function theorem,

d(r + �)

d
�

"
"�1

� = � 1
1�


�
"

"�1

� 1
1�
�1

(r + �)
1

1�


1
1�


�
"

"�1

� 1
1�


(r + �)
1

1�
�1 � �
1

1�
 �



1�


< 0

Hence,

d
h

"
"�1 (r + �)

i
d
�

"
"�1

� = r + � +
"

"� 1
d(r + �)

d
�

"
"�1

�
= �(r + �) �

1
1�
 �



1�
 (r + �)

1
1�


�
"

"�1

� 1
1�


(r + �)
1

1�
 � �
1

1�
 �



1�
 (r + �)

< 0

7Abel et al. (1989) use the ratio (Y � wL)=K in their empirical evaluation of dynamic
e¢ ciency. They acknowledge that their analysis �depends on the assumption that capital
receives its marginal product, an assumption that excludes the possibility that capital income
includes substantial monopoly pro�t" (p.7). They suggest, however, that their calculation
is not badly distorted by monopoly pro�ts. In support of this view they point to average
values of about one for Tobin�s q, arguing that �if a large part of pro�ts re�ected returns to
something other than physical capital, one would suspect that the �rm�s market value would
substantially exceed the value of their physical assets." (p.10) This faith in Tobin�s q as a
good indicator of the importance of monopoly pro�ts seems questionable.
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this section, we have the following inequality:8

@Y

@K
<
@Y

@K
+

�

1� �
r + �

"� 1 =
Y � wL
K

(33)

The interpretation of (33) is intuitive. The rate of gross pro�ts is the sum of r+�

and the ratio of the entire pure pro�t (pro�t margins over the sum of interest

cost and wage cost) to capital; the marginal product of capital, on the other

hand, is the sum of r + � and a fraction of the ratio of pure pro�ts to capital:

only the pro�t margin on the cost of capital is included. Thus, the upward bias

comes from the pro�t margin on wage cost ( �
1��

r+�
"�1 =

1
"�1

wt
kt
) which is included

in the rate of gross pro�ts but not in the marginal product of capital.

The upward bias from the use of measures based on (Y � wL)=K can be

signi�cant. As an example, let � = wL
wL+(r+�)K = 2=3, " = 5 and r + � = 0:08.9

With these values, the ratio of (annual) gross pro�ts to capital exceeds the

(annual) gross marginal product by four percentage points.

3 Public debt

Extending the model, we introduce a government that consumes (Gt), levies

lumpsum taxes on the young and old generations (TYt and TOt ) and has debt

(Bt).10 Young households save in the form of �xed capital and government

bonds; these assets, we assume, are perfect substitutes and have the same rate

of return, rt.

Equation (22) now takes the form

Kt+1 +Bt+1 = St (34)

8We have

Y � wL
K

=
Y

wL+ (r + �)K

wL+ (r + �)K

K
� �

1� �
(r + �)

=

�
"

"� 1
1

1� �
� �

1� �

�
(r + �)

=
r + �

"� 1
�

1� �
+
@Y

@K

9The numerical value of the marginal product of capital �like the output-capital ratio, the
wage rate w; the rate of depreciation �, and the rate of return r �depends on the length of
the accounting period. The numbers refer to annualized rates.
10Since the labor supply is taken to be inelastic, the lumpsum assumption only matters for

the old generation.

10



while the public sector budget constraint is given by

Gt + (1 + rt)Bt = Bt+1 + T
Y
t + T

O
t (35)

The young generation in period t maximizes utility subject to a modi�ed

constraint,

c1;t +
1

1 + rt+1
c2;t+1 = wt + �t � � t �

1 + n

1 + rt+1
�t+1 (36)

where � t � TYt =Lt and �t � TOt =Lt. This gives the following solution for saving

St =

�
s(wt + �t � � t) + (1� s)

1 + n

1 + rt+1
�t+1

�
Lt (37)

Substituting (37) into (34) and dividing through by Lt, equations (34) and

(35) can be rewritten,

(1 + n)(kt+1 + bt+1) = s(wt + �t � � t) + (1� s)
1 + n

1 + rt+1
�t+1 (38)

gt + (1 + rt)bt = (1 + n)bt+1 + � t + �t (39)

where gt � Gt=Lt and bt � Bt=Lt.
Fiscal policy clearly a¤ects the outcome but that leaves open the determi-

nation of an appropriate policy. For present purposes it may be reasonable to

assume �somewhat heroically �that government consumption has been set at

an optimal level, gt = g. This leaves the two tax parameters, � t and �t: The

achievement of dynamic e¢ ciency is one obvious criterion for deciding these tax

rates. To be more speci�c, assume that the capital intensity associated with the

interest rate r� is considered socially optimal in a steady state.11 One can now

look for combinations of � t and �t that maintain rt = r
�:

Taking taxes on the old as exogenous and constant (�t+1 = �t = �), equa-

tions (38) and (39) give us the required trajectory of the debt ratio:

bt+1 = a0 � a1bt (40)

11As a special case, a social planner could aim for the Golden Rule with the gross marginal
product of capital equal to �+ n: The argument, however, is independent of how the optimal
capital intensity (the optimal rate of return) is being determined.
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where

a0 �
s[w(r�) + �(r�)� g]� (1 + n)k(r�) + 1+n+s(r��n)

(1+r�) �

(1� s)(1 + n)

a1 �
�

s

1� s

��
1 + r�

1 + n

�
and where w(r�); �(r�) and k(r�) � K=L are determined by equations (14),

(16) and (13).12 Solving (40) for the steady state value of bt, we have:

b� =
a0

1 + a1
=
s[w(r�) + �(r�)� g]� (1 + n)k(r�)

1 + n+ s(r� � n) +
1

1 + r�
� (41)

By assumption, the steady state is socially optimal and therefore dynami-

cally e¢ cient. The value of b� can be positive or negative, depending on para-

meters. In cases where b� > 0; however, an attempt to eliminate the debt could

lead to dynamic ine¢ ciency. Putting it di¤erently, the e¢ ciency properties of a

hypothetical no-debt economy cannot be ascertained simply by observing that

with public debt the economy is in fact e¢ cient. To get some idea of the size of

the bias, assume that the initial share of government bonds in total household

wealth (capital plus government bonds) is 25%. With this initial composition of

household wealth, the elimination of public debt will reduce the gross marginal

product by about 25 percent if the production function is Cobb-Douglas;,with

plausible values of the initial (annualized) marginal product, this implies that

the elimination of public debt reduces the marginal product by 2-3 percentage

points.13 The reduction in the marginal product will be larger (smaller) if the

elasticity of substitution is below (above) one.

It should be noted, perhaps, that the designation of a socially optimal cap-

ital intensity does not depend on the presence of imperfect competition; the

12The di¤erence equation (40) is stable if a1 < 1. The stability condition will be met if the
saving rate s is su¢ ciently low (i.e., the discount rate � is su¢ ciently large). The stability
properties of the equation are of limited interest, however: starting from some arbitrary initial
values of k0 and b0; it will not, in general, be optimal to jump directly to the steady-state
value k(r�) in period 1: The precise design of an optimal policy depends on the details of the
social welfare function.
13With a Cobb-Douglas production function, Y = K�L1��, we have

@Y

@K
= �K��1L1��

and

� log
@Y

@K
= (�� 1)� log k

The e¤ect on K of eliminating debt follows from the saving equation. If x = (K +B)=K and
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expression in equation (41) holds for the any value of "; including the special

case of perfect competition when "!1: Putting it di¤erently, the value of " �
the degree of imperfection �in�uences the precise values of r� and b� but not

the general approach to determining these values.

4 Implications

Debt and growth Given the current focus on possible dangers of public debt,

it is interesting to note that the required debt is inversely related to the growth

rate n. Di¤erentiating (41) with respect to n, we have

@b�

@n
= �s (1 + r

�)k(r�) + (1� s)[w(r�) + �(r�)� g]
[1 + n+ s(r� � n)]2 < 0 (42)

The sum of wage income and monopoly pro�ts exceeds government consumption

in actual data as well as for any plausible optimal path; thus w(r�)+�(r�) > g.

This inequality implies that @b�=@n < 0.

The inverse relation between growth and government debt is quite intuitive.

The reason for the debt is that the young generation wants to save �too much�.

k = K=L, equation (38) implies that in a steady state

xk =
s

1 + n
(w + � � �) + (1� s) 1

1 + r
�

=
s

1 + n

�
1� �+ �

"

�
k� � s

1 + n
� + (1� s) 1

1 + r
� (*)

Assume that the values of g and � are kept unchanged. If the optimal steady state (associated
with the initial debt-capital ratio of 1/3) has r� = n, it follows from (39) that the value of
� in the zero-debt steady state will also be unchanged, compared to its value in the optimal
steady state. Using (*) and assuming (plausibly) that � � 0 and s

1+n
� � (1 � s) 1

1+r
�; we

now have
d log

h
s

1+n

�
1� �+ �

"

�
k� � s

1+n
� + (1� s) 1

1+r
�
i

d log k
> �

Hence,
�(1� �)� log k < � log x

and

�log
@Y

@K
= �(1� �)� log k

< � log x

= log 1� log 4
3

It follows that

log
@Y

@K

no debt

< log

 
3

4

@Y

@K

with debt
!
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But the threshold de�ning �too much�depends on the growth rate: a higher

growth rate implies that more �xed capital will be needed to employ the future

generation and, consequently, that the required amount of public debt will be

lower.

Austerity and debt Austerity programs typically include cuts in government

consumption and reductions in entitlements like social security or medicare.

These austerity measures can be distributionally regressive. Surprisingly, per-

haps, from a long-run perspective they are also counterproductive on their own

terms: they aggravate the �debt problem�.

It is readily seen �using (41) �that the required debt (b) depends inversely

on public consumption (g) and directly on the level of taxes on the old genera-

tion (�).14 An increase in g implies that consumption has to contract in order

to maintain equilibrium in the product market. With a given �; this is achieved

by increasing taxes on the young. As a result the desired saving decreases; this,

in turn, reduces the need for government debt as an outlet for saving. Analo-

gously, with a given value of g; an increase in � (corresponding to a reduction

in entitlement programs for the old) must be accompanied by a reduction in

� in order to maintain the level of consumption and equilibrium in the goods

market; the disposable income of the young increases, and the amount of public

debt must increase to meet the rise in saving.

Debt and taxes The debt ratio and the tax on the young are both endoge-

nous, and the long-run correlation between them, not surprisingly,is ambiguous:

it depends on the underlying shifts in exogenous variables or parameters. Equa-

tions (39) and (41) can be used to derive the steady-growth solution for the tax

rate � :

�� =
(r� � n)[s(w� + ��)� (1 + n)k�]

1 + n+ s(r� � n) � 1 + n

1 + r�
�+

1 + n

1 + n+ s(r� � n)g (43)

Thus, an increase in g raises � and reduces b; an increase in � reduces � and

raises b: It follows that shifts in g or � produce a negative correlation between

the steady-growth values of � and b : high debt is associated with low taxes.

But other parameter shifts yield a positive correlation; a fall in �, for instance,

will raise the wage share and produce an increase in both b and � if r� > n:

14An inverse relation between debt and government consumption is obtained in a non-OLG
setting by Schlicht (2006) and Ryoo and Skott (2013).
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5 Conclusion

The possibility of a link between public debt and economic growth has received

a great deal of attention following the publication of Reinhart and Rogo¤ (2010)

and Kumar and Woo (2010). Assuming that a negative correlation can be found

between debt and economic growth, the key question concerns causation.

The analysis in this paper identi�es a long-run causal link from growth to

debt: a reduction in the long-run rate of growth will tend to produce an increase

in the long-run debt ratio. We have also shown that austerity policies can be

counterproductive on their own terms (as well as distributionally regressive):

reductions in government consumption and/or in entitlement programs for the

old increase public debt in the long run.

The model is abstract and focuses on long-run outcomes (steady states). It

has other obvious limitations. Most prominently, perhaps, we have assumed

a closed economy. Open (and local) economies are in a very di¤erent posi-

tion than sovereign countries that control their own currency; this paper says

nothing about the open-economy issues. A second limitation is the neglect of

heterogeneity within generations and questions of intra-generational distribu-

tion. Public debt may have regressive distributional e¤ects if taxes on wage

income are used to �nance interest payments to the rich. The possible incentive

e¤ects of taxes, third, have been ignored; it should be noted, however, that a

higher level of debt need not be associated with higher taxes (section 4). The

analysis of these and other complicating issues is beyond the scope of this paper.

Appendix A: Existence and stability of steady

states

Existence To see the existence of the solution to (24), let us de�ne

f(R) � s
"�

"

"� 1

� 1
1�


��
1

1�
 ��



1�
R
1

1�
 �R
#
� 1� n (A1)

where R = r + �. We then have two cases:

1. 0 � 
 � 1: f(0) < 0, limR!1 f(R)!1 and f(R) is continuous. There-

fore there exists R 2 (0;1) such that f(R) = 0. The convexity of f(R)
ensures the uniqueness.
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2. 
 < 0: f(0) < 0, limR!1 f(R) ! �1 and f(R) is continuous. f(R) is

concave and initially increasing but decreasing eventually. Therefore if �

is su¢ ciently large (for given values of " and �), there exist two distinct

roots, namely, R1 and R2 with R1 < R2. Note that the concavity of f(R)

implies

f 0(R1) = s

�
1

1� 


�
1 +

1 + n

sR1

�
� 1
�
> 0 (A2)

f 0(R2) = s

�
1

1� 


�
1 +

1 + n

sR2

�
� 1
�
< 0 (A3)

Stability The left-hand and the right-hand side of (23) are strictly decreasing

in rt+1 and rt, respectively. Thus, (23) implies that rt+1 is strictly increasing

in rt, i.e., drt+1=drt > 0 for all rt. It follows that a �xed point of (23) is locally

stable if and only if drt+1=drt < 1 at the point.

rt+1 is a decreasing function of Kt+1=Lt+1: To show that drt+1=drt < 1 at

a stationary point is therefore equivalent to showing that d(Kt+1=Kt)=drt is

positive. Intuitively, at a steady state the capital stock grows at the same rate

as the labor force; the steady state is stable if a value of r above the steady

growth solution (corresponding to a K=L below the equilibrium) generates a

growth rate of the capital that exceeds the growth rate of the labor force. We

have

Kt+1

Kt
= s(wt + �t)

Lt
Kt

= s[

�
"

"� 1

� 1
1�


��
1

1�
 ��



1�
 (rt + �)
1

1�
 � (rt + �)]

= f(rt + �) + 1 + n (A4)

The stability results now follow from the properties of the f�function (see
above): (i) if 0 � 
 � 1; the unique stationary solution is stable; (ii) if 
 < 0,
the low solution for r is locally stable and the high solution is unstable.
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