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1 Introduction

The recent collapse of the U.S. housing market has demonstrated the critical importance

of being able to forecast movements in house prices. However, the choice of a proper

forecasting model is not an easy task. One reason is that the U.S. housing market is

characterized by many regional disparities, which implies that a given forecasting model

may be useful in some regions but not others. Another reason is that the performance of

specific house price predictors may be unstable over time. Thus, they may be useful at

some points in time but not others.

In this paper we examine the ability to forecast house prices in each of the 50 states using

Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS), which are new

forecasting techniques recently developed and motivated by Raftery, Karny and Ettler

(2010) and Koop and Korobilis (2012). With m predictors at hand, the methods consider

all the K = 2m possible model combinations in each time period t. The methods require

computing the probability that model k ∈ {1, ..., K} should be used for forecasting at

time t, which is done using Kalman filtering methods. DMS then chooses the model with

the highest probability at time t, while DMA uses the estimated probabilities as model

weights.

The advantage of DMA and DMS is that they allow the parameters and forecasting model

to change over time. Given the recent turbulence in U.S. housing markets, we argue that

DMA and DMS are ideal for forecasting house prices. First, it seems likely that the

marginal effects of house price predictors are time-varying due to e.g. structural breaks.

Second, movements in house prices may be driven by different factors at different points
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in time. For example, it is possible that the best house price predictors during house price

booms are different from those during house price busts. Likewise, it may also be optimal

to use many house price predictors at some points in time but only a few at others. The

distinguishing feature of DMA and DMS is that the methods capture not only parameter

shifts but also model changes.

In the light of the strong variation in house price growth rates across different parts of the

U.S., we apply DMA and DMS to forecast house price growth rates in each of the 50 states.

We show that the degree of house price forecastability using DMA and DMS is strong in

basically all of the 50 states. We compare with a wide range of different benchmark models

and find that DMA and DMS come out as superior forecasting methods. Forecasting

methods that do not allow for model change tend to perform less well in forecasting house

price changes. In addition, we also find that it is important to allow the marginal effects

of specific predictors to change over time, i.e. to allow for parameter shifts.

During the recent boom-bust cycle, coastal states tended to experience the largest house

price increases but subsequently also the largest house price declines. We find an almost

one-for-one relation between the magnitude of the boom-bust cycles and the level of

forecast errors across states. The larger the boom-bust cycle, the larger the level of

forecast errors. We also find a positive relation between the magnitude of the boom-bust

cycles and the forecasting gains of using DMA and DMS. This result is intuitive because

the benefits of model change and parameter shifts should be the highest in the most

volatile housing markets.

Ghysels, Plazzi, Valkanov and Torous (2013) provide a survey of the growing empirical
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literature on forecasting house prices. Our contribution to this literature is to document

the importance of allowing for both time-varying parameters and model change. Our

paper relates most closely to Rapach and Strauss (2009) who examine differences in house

price forecastilbity in the 20 largest states in the U.S. as measured by population. Rapach

and Strauss (2009) do not include the recent important period with the collapse of the U.S.

housing market in their analysis, so our results are not directly comparable. Nevertheless,

using forecasting combination methods, they also find that it has been more diffi cult to

obtain accurate house price forecasts in coastal states than in interior states. However, in

contrast to Rapach and Strauss (2009), we tend to obtain the largest forecasting gains in

coastal states.

The structure of the rest of the paper is as follows. Section 2 describes the data and

provides summary statistics for the growth rates in real house prices across the 50 states.

Section 3 describes how we use Dynamic Model Averaging and Dynamic Model Selection

to forecast state level house prices. Section 4 provides the empirical results for each of

the 50 states. Section 5 concludes.

2 Data and summary statistics

We use state level all-transactions house price indexes available from the Federal Housing

Finance Agency (FHFA). The FHFA all-transactions indexes are constructed using repeat-

sales and refinancings on the same single-family properties, and they are available on

quarterly frequency back to the mid-1970s. We convert the nominal house price indexes

to real units based on the consumer price index (all items) available from the Bureau of
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Labor Statistics (BLS). We then calculate the annualized log real growth rate in house

prices for each of the 50 states:

yi,t = 400 ln

(
Pi,t
Pi,t−1

)
i = 1, ..., 50 (1)

where Pi,t denotes the level of real house prices in state i at time t.

Fig. 1 shows the mean growth rates in house prices for each of the 50 states in our

sample period from 1976:2 to 2012:4 (inflation-adjusted and annualized). The highest

mean growth rates for the entire period have been in states on the north-east and west

coasts of the U.S., including Massachusetts, California, Vermont, Washington and New

York. For these states the overall mean growth rates are above 1.5%. The lowest mean

growth rates for the whole period have been in states such as West Virginia, Nevada and

Mississippi where the mean growth rates have been less than −0.5%. The negative growth

rates are mainly driven by the recent collapse of the housing markets.

To illustrate the dramatic changes in house prices during the recent boom and bust of the

housing markets, Fig. 2 plots mean growth rates over the 1995:1-2006:4 period, while Fig.

3 plots mean growth rates over the 2007:1-2012:4 period. Although most state level house

prices peaked around the end of 2006, there is cross-state variation in the timing of the

boom-bust cycles. To enhance comparison, we assume the same timing across all states.

In the boom period, which we assume is 1995:1-2006:4, mean growth rates range from

1.07% in Indiana to 7.10% in California. In the bust period, which we assume is 2007:1-

2012:4, mean growth rates range from −14.81% in Nevada to 1.49% in North Dakota; the

only state with a positive growth rate during the bust period. The figures illustrate that
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several coastal states, e.g. California and Florida, have had very large positive growth

rates during the boom but also very large negative growth rates during the bust.

In general, the states in which house prices rose the most during the boom are also the

states in which house prices declined the most during the bust. Fig. 4 illustrates this

empirical pattern clearly. The figure plots mean growth rates during the boom against

mean growth rates during the bust. The correlation is −0.73. Large positive growth rates

in the boom period have been followed by large negative growth rates in the bust period,

while small positive growth rates in the boom period have been followed by small negative

growth rates in the bust period.

The strong regional differences suggest that it is necessary with both state level and

aggregate information variables to predict house prices. The most popular house price

indicators in the literature include valuation ratios, labor market variables, business cycle

indicators and interest rate related variables, see e.g. Hamilton and Schwab (1985), Case

and Shiller (1990), Malpezzi (1999), Rapach and Strauss (2009), and Bork and Møller

(2013). For each state, our set of house price predictors is based on ten variables in total;

five measured at the state level and five at the national level. We transform all variables to

obtain stationarity.1 The five state level variables are the price-income ratio (in logs), the

unemployment rate, real per capita income growth (in logs and annualized), labor force

growth (in logs and annualized) and the lagged real house price growth rate.2 The five

national variables are the 30-years mortgage rate (in first differences), the spread between

10-year and 3-month Treasury rates, industrial production growth (in logs and annual-

1Across all 50 states, we have carried out Augmented Dickey-Fuller (ADF) tests for all transformed
variables. The ADF tests generally reject non-stationarity.

2State level data on income, the labor force and the unemployment rate are available from BLS.

5



ized), real consumption growth (in logs and annualized) and housing starts (in logs).3 In

the out-of-sample predictions, we take into account publication lags of macroeconomic

variables by lagging them an additional quarter.

3 DMA and DMS

Dynamic Model Averaging (DMA) and Dynamic Model Selection (DMS) are developed

by Raftery, Karny, and Ettler (2010) and further motivated by Koop and Korobilis (2012).

In the following we make a brief description of how we use DMA and DMS to forecast

state level house prices.

DMA and DMS build on time-varying parameter (TVP) models (state indices are sup-

pressed):

yt = x′t−1βt + εt (2)

βt = βt−1 + ηt (3)

where yt is the real house price growth rate, xt−1 is an m-vector of predictors (including

an intercept), βt is an m-vector of coeffi cients, and the innovations are distributed as

εt
ind∼ N (0, Vt) and ηt

ind∼ N (0,Wt) .

The TVP model in (2)-(3) can be estimated straightforwardly using Kalman filter meth-

ods. However, the TVP model assumes that the same set of predictors should be used

in all time periods, which may not be optimal when forecasting house prices. DMA and

3All national variables are downloaded from the FRED database of St. Louis Fed.
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DMS extend the TVP model by allowing for model change. To illustrate this, we consider

the case of multiple models based on various subsets of the variables in xt−1:

yt = x
(k)′
t−1β

(k)
t + ε

(k)
t (4)

β
(k)
t = β

(k)
t−1 + η

(k)
t (5)

where k = 1, ..., K denotes a particular model. ε(k)t is N
(

0, V
(k)
t

)
and η(k)t is N

(
0,W

(k)
t

)
.

Furthermore, it is useful to introduce a model indicator Lt so that Lt = k means that

model k is selected. DMA and DMS are then implemented by computing Pr (Lt = k | Y t−1)

for k = 1, ..., K, where Y t−1 = {y1, ..., yt−1} , i.e. computing the probability that model

k should be used to forecast yt, given information through time t − 1. We denote these

model probabilities by πt|t−1,k = Pr (Lt = k | Y t−1). The idea behind DMS is to choose

the model with the highest probability in each time period, while DMA uses the prob-

abilities as model weights to compute the average of the K forecasts.4 Accordingly, we

calculate recursive forecasts of yt conditional on Y t−1 using either DMA or DMS as:

ŷDMA
t =

K∑
k=1

πt|t−1,kx
(k)′
t−1β̂

(k)

t−1 (6)

ŷDMS
t = x

(k∗)′
t−1 β̂

(k∗)

t−1 (7)

where β̂
(k)

t−1 is the parameter prediction and where k
∗ in the last equation refers to the

model with the maximum model probability at time t− 1.

Aiolfi and Timmermann (2006) suggest the use of clustering techniques as a way to filter

4Raftery, Karny and Ettler (2010) focus on DMA in an industrial application, while Koop and Korobilis
(2012) use both DMA and DMS to forecast inflation. Koop and Korobilis (2012) provide Matlab code
for implementing DMA and DMS. We thankfully make use of their code in our application.
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out the worst performing models. As a supplement to DMS and DMA, we implement

clustering in the following way. We sort the K models into P equal-sized clusters Cp

for p = 1, ..., P based on descending model probabilities. We then compute the cluster

forecast with the highest model probabilities denoted by ŷDMSC1
t following the principles

in equation (6) with k in the summation being replaced with k ∈ C1 and with model

probabilities appropriately rescaled to sum to one.

Three simplifying assumptions are made in Raftery, Karny and Ettler (2010) which imply

that ŷDMA
t or ŷDMS

t can be computed in a single pass of the Kalman filter for each of the

K models. The first two assumptions imply that the parameter predictions β̂
(k)

t−1 can be

calculated independently for each model. In particular, assuming that β(k)t−1 is only defined

when Lt−1 = k , and simplifying the estimation of the state error covariance matrix using

a forgetting factor λ, simplifies the Kalman filter prediction of the parameters to:

β̂
(k)

t|t−1 = β̂
(k)

t−1|t−1 (8)

Σ
(k)
t|t−1 =

1

λ
Σ
(k)
t−1|t−1 (9)

where Σ
(k)
t|t−1 denotes the covariance matrix of β

(k)
t−1, while the updating equations simplify

to:

β̂
(k)

t|t = β̂
(k)

t|t−1 + Σ
(k)
t|t−1x

(k)′
t−1

(
V
(k)
t + x

(k)′
t−1Σ

(k)
t|t−1x

(k)
t−1

)−1 (
yt − x(k)′t−1β̂

(k)

t−1

)
(10)

Σ
(k)
t|t = Σ

(k)
t|t−1 − Σ

(k)
t|t−1x

(k)′
t−1

(
V
(k)
t + x

(k)′
t−1Σ

(k)
t|t−1x

(k)
t−1

)−1
x
(k)
t−1Σ

(k)
t|t−1 (11)

The forgetting factor approach has been widely used in adaptive filtering and implies that
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estimation of the state error covariance during the Kalman filtering can be simplified to

W
(k)
t =

(
λ−1 − 1

)
Σ
(k)
t|t−1, which in turn leads to (9).5 The third assumption is related to

the model prediction component in (6)-(7) involving another forgetting factor α that also

leads to a very significant computational gain as we avoid specifying a large transition

probability matrix. To illustrate the gain, note that we consider all possible combinations

of the m predictors, so that the number of models is K = 2m.With m = 10, we therefore

consider K = 1024 models in each time period. Since K is large, it is not feasible to do

Markov switching using a K×K transition matrix. The large dimension of the transition

matrix would lead to imprecise inferences and excessive computation time. Consequently,

the model prediction is defined by:

πt|t−1,k =
παt−1|t−1,k∑K
`=1 π

α
t−1|t−1,`

(12)

where α is set to a value just below one, while the model updating equation is:

πt|t,k =
πt|t−1,kfk (yt|Y t−1)∑K
`=1 πt|t−1,`f` (yt|Y t−1)

(13)

where f` (yt|Y t−1) is the predictive density of model `, i.e. the density of a

N
(
x
(`)′
t−1β̂

(`)

t−1, V
(`)
t + x

(`)′
t−1Σ

(`)
t|t−1x

(`)
t−1

)
distribution evaluated at yt. The equations (8)-(13)

represent the complete Kalman filter prediction and updating equations.

5λ is usually slightly below 1 and essentially implies that estimation is based on age-weighed data.
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3.1 Time-varying forgetting factors

In some periods it may be attractive to allow for more rapid model switches and parameter

shifts than in others. Consequently, we relax the assumption of constant forgetting factors.

Similar to McCormick, Raftery, Madigan and Burd (2012), we select αt as:

arg max
αt

K∑
k=1

fk
(
yt|Y t−1) παtt−1|t−1,k∑K

`=1 π
αt
t−1|t−1,`

(14)

where αt can take on a finite number of values. We run the Kalman filter in parallel for

each candidate value of αt. We then select the value of αt that gives the highest predictive

likelihood across the K models at each time period. To limit the computational burden,

αt can only take on five values: αt ∈ {0.95, ..., 0.99} . This interval is also used by e.g.

Koop and Korobilis (2012).

Typically, time-variation in λ is modelled based on the most recent squared prediction

error as in Fortescue, Kershenbaum and Ydstie (1981) and others. However, we propose

to calculate model specific time-variation in λ based on the entire history of model k’s

squared prediction errors in order to limit excess sensitivity to a single large prediction

error. Specifically, we calculate Ψ quantiles of an expanding history of squared prediction

errors, E t−1k =
{
ε2k,1, ..., ε

2
k,t−1

}
, and denote these quantiles by qψ

(
E t−1k

)
for ψ = 1, ..,Ψ.

Then we select λ(k)t = λ
(k)
t−1 if ε

2
t,k is within the same interval,

]
qψ−1

(
E t−1k

)
, qψ
(
E t−1k

)]
, as

in the previous period. On the other hand, λ(k)t steps up if the current prediction error

is relatively low, while λ(k)t steps down if the current prediction errors is relatively high.

λ
(k)
t can take on the same set of values as αt; thus λ

(k)
t can effectively move around in a

bounded interval. Our empirical results are robust to allowing λ(k)t to move around in a
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multi-step fashion.

3.2 The case of no forgetting

Raftery, Karny and Ettler (2010) show that standard Bayesian Model Averaging (BMA)

(Leamer, 1978; Hoeting, Madigan, Raftery and Volinsky, 1999) is a special case of DMA.

In particular, if we set αt = λt = 1, there is no forgetting and we recover static BMA.

In a similar way, when there is no forgetting, DMS becomes equivalent to static Bayesian

Model Selection (BMS). In contrast, allowing for forgetting, DMA and DMS imply that

the model indicator and model parameters evolve in time, which is why these methods

are called dynamic.

4 Empirical results

We consider the following candidate forecasting models:

1. DMA: Dynamic Model Averaging uses model probabilities as weights to compute

the average forecast.

2. DMS: Dynamic Model Selection puts all the weight on the model with the highest

probability.

3. DMSC1 : Dynamic Model Selection with clustering uses the best cluster of models

measured by model probabilities.6

6We use P = 16 clusters, implying that the number of models in each cluster is K/P = 64.
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4. BMA: DMA with forgetting factors fixed at αt = λt = 1.

5. BMS: DMS with forgetting factors fixed at αt = λt = 1.

6. EW: Equal weighting of forecasts from K OLS regression models.

7. ALL: A "kitchen sink" approach with OLS forecasts using all predictors.

8. AR1: OLS forecasts using a constant and the lagged house price growth rate.

9. MEAN: OLS forecasts using a constant only.

The OLS regressions are estimated recursively using an expanding window.

We evaluate the forecasting performance of the models using the Mean-Squared-Forecast-

Error (MSFE). The out-of-sample period is from 1995:1 to 2012:4, which covers the recent

boom and bust periods. Table 1 gives an overview of the main results. The table reports

summary statistics of the MSFE ratios of the various models relative to the MEAN (con-

stant only) benchmark. On average across the 50 states, DMA and DMSC1 perform the

best. The average MSFE reduction relative to the MEAN benchmark is about 25% for

these two methods. The gain in forecasting power is consistent across states: DMA and

DMSC1 generate MSFE ratios less than one in all 50 states. Fig. 5 maps the MSFE

ratios of DMA relative to the MEAN benchmark. The figure illustrates that DMA is far

superior to the historical mean. The lowest ratio is obtained for Hawaii (0.545), while the

highest ratio is obtained for Utah (0.961).

DMS selects the single "best" model in each time period, while DMSC1 selects the "best"

cluster of models in each time period. In far the majority of states, the two approaches

12



give similar results, but for a few states DMS performs worse than DMSC1 . For instance,

in Kentucky the MSFE ratio is 1.165 using DMS compared to 0.972 using DMSC1 . Since

DMS does not offer diversification gains, it may lead to inaccurate forecasts in a few cases.

On the other hand, out of all models considered, DMS produces the lowest minimum

MSFE ratio across the 50 states (0.501 in Nevada).

Combination of forecasts fromOLS regression models have been shown in empirical studies

to produce better forecasts on average than forecasts from individual OLS regression

models. For example, Rapach and Strauss (2009) find that combining forecasts from

OLS models does well in predicting house price changes. We confirm this result. The

EW approach produces an average MSFE reduction of 17%, and it does better than the

MEAN benchmark in 44 out of 50 states.

BMA and BMS also outperform the MEAN benchmark with average MSFE reductions

of 14% and 9%, respectively. The MSFE ratio is less than one in 44 states using BMA

and in 35 states using BMS.

The AR1 model is on average somewhat better than the historical mean benchmark. It

generates an average MSFE reduction of about 4% and produces MSFE ratios less than

one in 27 out of 50 states. This result reflects that the growth rates in some states are

positively autocorrelated. Fig. 6 maps the MSFE ratio of DMA relative to the AR1 model.

The figure shows that DMA convincingly outperforms the AR1 model: The MSFE ratio

is less than one in 49 out of 50 states (Utah only exception).

The far worst method is OLS forecasts with all predictors, which most likely is due to

the well-known problem that too many variables can lead to overfitting and inaccurate
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forecasts. Given its poor performance, we do not include this benchmark in the analysis

below.

4.1 Statistical tests

In this section, we formally test whether the various forecasting methods generate lower

MSFEs across states than the historical mean benchmark. Clark and McCracken (2001)

show that the commonly used Diebold and Mariano (1995) statistic has a nonstandard

distribution when testing for equal accuracy of forecasts from nested models. Clark and

West (2007) propose an adjusted statistic which is approximately normally distributed

when comparing forecasts from nested models. We first define:

fj,t = (yt − ŷMEAN,t)2 − (yt − ŷj,t)2 + (ŷMEAN,t − ŷj,t)2 (15)

where ŷMEAN,t denotes the forecast of yt using the historical mean benchmark, and ŷj,t

denotes the forecast from model j = AR1, EW, BMA, BMS, DMA, DMS, DMSC1 . To

carry out the Clark-West test, we regress fj,t on a constant and then use the resulting

t-statistic to test for a zero coeffi cient. We thereby test the null hypothesis that the MSFE

ratio between model j and the nested MEAN benchmark is greater than or equal to one

with the alternative hypothesis that it is less than one.

Table 2 reports MSFE ratios and Clark-West t-statistics in parenthesis. The null hypo-

thesis is rejected if the t-statistic is greater than 1.645 (for a one sided 5% test). In that

case, the corresponding MSFE ratio is in bold font. From the table, we see that DMA

delivers statistically significant out-of-sample gains relative to the MEAN benchmark in
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all 50 states. The DMSC1 approach significantly outperforms the MEAN benchmark in

49 states. The only exception is Kentucky where the MSFE reduction of 3% is insigni-

ficant at the 5% level. The DMS approach also performs convincingly with significant

out-of-sample gains in 48 states (Kansas and Kentucky are the exceptions). For Color-

ado and Oklahoma, DMS generates MSFE ratios greater than one but the null that the

MEAN benchmark performs equally well or better than DMS is still rejected. The reason

is that when comparing a parsimonious null model to a larger model that nests the null

model, the Clark-West test takes into account added estimation uncertainty from estim-

ating parameters in the larger model that are zero under the null. In particular, under

the null, we should expect a MSFE ratio greater than one due to a gain in estimation

effi ciency for the parsimonious null model using a finite sample.

Overall, the results show that DMA, DMS and DMSC1 are robust forecasting methods as

they consistently outperform the MEAN benchmark. The next best forecasting methods

appear to be the EW and BMA approaches. They both generate significantly lower

MSFEs than the MEAN benchmark in 44 states, while BMS significantly outperforms

the MEAN benchmark in 39 states. Rather than comparing with the MEAN benchmark

in the Clark-West tests, we have also tried comparing with the AR1 model. This leads to

the same ranking of forecasting methods. As Table 2 shows the AR1 model significantly

outperforms the MEAN benchmark in 20 states only.

The final row of Table 2 provides results for the aggregate U.S. housing market. We

use the same predictive variables as in the above but replace state-level variables with

national variables. The DMA, DMS and DMSC1 methods again perform well. For these

three methods the MSFE reductions are 33% or more, and the improvement in forecasting
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accuracy is strongly statistically significant.

4.2 Performance over time

To visualize the out-of-sample performance of the various forecasting methods, we follow

the suggestion of Goyal and Welch (2003) and plot the difference between the cumulative

squared forecast error for the MEAN benchmark and the cumulative squared forecast

error for model j during the out-of-sample period:

CDSFEj,t =
2012:4∑
t=1995:1

(
e2MEAN,t − e2j,t

)
(16)

By plotting the cumulative sums up to each point in time, we can assess the stability of

the out-of-sample performance of model j. To get the overall picture for the 50 states,

Fig. 7 plots
50∑
i=1

CDSFEj,i,t with j = AR1, BMA, EW, DMA, DMS, and where subscript

i refers to the ith state. The figure identifies the time periods where model j succeeded

in beating the MEAN benchmark (positive slope) and the time periods where model j

failed to beat the MEAN benchmark (negative slope). The figure illustrates that DMA

and DMS are better at capturing the boom period from the mid-90s up to around 2006

than the other forecasting methods. DMA and DMS also do really well in capturing the

initial collapse of the housing markets around the period from 2007 to 2008. However,

DMA and DMS as well as the other forecasting methods all experience deterioration in the

predictive ability in 2008:4 and 2009:1. In these two quarters, many states had positive

growth rates after a series of negative growth rates.
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4.3 Forecast performance and the volatility of housing markets

The results in Table 2 illustrate that DMA, DMS and DMSC1 work well in basically

all states. The gains of using these methods are therefore not concentrated to specific

geographic areas. However, looking at the level of forecast errors, interesting patterns

arise across the states. In Fig. 8, we relate the MSFE level using DMA to the magnitude

of the boom-bust cycles across the 50 states. The figure plots the MSFE level against the

growth volatility during the out-of-sample period from 1995:1 to 2012:4. The correlation is

0.97, i.e. there is an almost one-for-one relation between growth volatility and forecasting

accuracy. The higher the growth volatility (the larger the boom-bust cycle), the larger

is the MSFE level. This strong pattern implies that it has been more diffi cult to obtain

accurate forecasts in coastal states where housing markets have tended to be more volatile

than in interior states. Rapach and Strauss (2009) find a similar pattern across states.

The gain in forecasting accuracy of allowing for model change and parameter shifts is

highest in the most volatile housing markets. To illustrate this, we consider the top four

and bottom four states in terms of housing market volatility. Arizona, California, Florida

and Nevada are the states with the highest volatility, whereas Iowa, Oklahoma, Kansas

and Texas are the states with the lowest volatility. Fig. 9 plots realized house price

growth rates together with DMA forecasts (to keep the figure readable, it only includes

DMA forecasts). Focusing on the top four volatility states, the figure shows that DMA

captures a large part of the sharp decline in house price growth rates around the recent

crash in housing markets. In Fig. 10, forecasted and realized growth rates are transformed

into indexes with base 1994:4 = 100. Besides DMA, we include DMS, EW and the AR1
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model. From the figure, we see that DMA and DMS capture a much larger part of the

big housing booms in Arizona, California, Florida and Nevada than the other forecasting

methods. At the same time, DMA and DMS tend to forecast the bust faster in those

states relative to the other forecasting methods, which most likely reflects that DMA and

DMS are able to adjust more quickly to structural changes. Turning to Iowa, Oklahoma,

Kansas and Texas, we observe much more stable housing markets and therefore also that

the forecasting gains of allowing for model change and parameters shifts are less obvious.

4.4 Dimension of models and choice of variables

DMA uses πt|t−1,k as weights for each of the k = 1, ..., K models. Thus, following Koop

and Korobilis (2012), we compute the expected (or average) number of predictors used

by DMA at time t as:

E (sizet) =
K∑
k=1

πt|t−1,ksize(k) (17)

where size(k) denotes the number of predictors in model k. Fig. 11 plots the medium value

of E (sizet) across the 50 states together with the 16th and 84th percentiles. The purpose

of the figure is to give an idea about variations in the degree of parsimony over time and

across states. The figure shows that the number of predictors used by DMA changes over

time, but also that DMA generally tends to favor parsimonious models. Typically, the

average number of predictors used by DMA is less than half out of the ten predictors

in the data set. During the out-of-sample window from 1995:1 to 2012:4, the medium

value ranges from around two to five predictive variables and the 84th percentile never

exceeds six predictive variables. The span between the 16th and 84th percentiles indicates
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a certain variation across states regarding the optimal dimension of the models. To shed

further light on this, Fig. 12 plots E (sizet) for the top four and bottom four states in

terms of housing market volatility. There is substantial shrinkage in both high and low

volatility states but typically more parsimonious models are preferred in low volatility

states.

It is also possible to use πt|t−1,k to illustrate which predictors are the most important across

states and over time. The posterior inclusion probability of a given predictive variable

is defined as the probability that DMA attaches to models that include that particular

predictive variable. Fig. 13 plots posterior inclusion probabilities for each of the ten

predictive variables. The figure plots the median as well as the 16th and 84th percentiles

across the 50 states. The figure illustrates that the instability in housing markets around

the recent collapse gives rise to significant model changes. In that period of time, the

price-income ratio and housing starts become increasingly important predictive variables.

In fact, in some of the states, DMA attaches a probability that is close to 1 to housing

starts. Interestingly, there is a general tendency of rather large spreads in the 16th and

84 percentiles for most of the predictive variables, suggesting that it is not the same

predictive variables that drive housing markets. In other words, housing markets are

segmented.

Fig. 14 plots posterior inclusion probabilities of the four most important variables in the

top four and bottom four states in terms of housing market volatility (the four variables

that most frequently have an inclusion probability exceeding 50% during the out-of-sample

period). The patterns in inclusion probabilities are complicated and there is not a single

variable which is always important across states and over time. However, in the most
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volatile states, housing starts and the term spread tend to be important, while in the

most stable states, unemployment tends to be important. Focusing on the period around

the bust, housing starts tend to become increasingly important in states such as Arizona

and Nevada, while the price-income ratio receives a very high weight in Florida. In

general, Fig. 14 demonstrates strong variation over time and across states regarding

which particular model specification works the best.

4.5 More benchmarks

4.5.1 Rolling OLS models

In the above, the OLS regressions for the EW and AR1 models are estimated recursively

using an expanding window, so that all available information at the time of the forecast

is used to estimate the coeffi cients. In case of parameter instability due to e.g. structural

breaks, rolling windows may lead to more accurate forecasts than expanding windows

because more rapid changes in the coeffi cients can be achieved using rolling OLS. It is

therefore interesting to compare the forecast performance of DMA, DMS and DMSC1 ,

which are designed to capture parameter shifts, with rolling OLS models. Tables 1 and 2

show that the best OLS-based method is forecast combination using equal weights (EW).

Thus, here we focus on the EW model. A drawback of using a rolling window scheme

is the arbitrariness of the choice of window size. We have tried using 5-year and 15-year

windows. With a 5-year window, the EW model produces an average MSFE ratio relative

to the MEAN benchmark across the 50 states of 0.81, and it outperforms the MEAN

benchmark in 42 out of 50 states. With a 15-year window, the performance is slightly
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better: The average MSFE ratio is 0.79, and the EW model now outperforms the MEAN

benchmark in 45 states. Still, the EW model does not match the performance of DMA,

which outperforms the MEAN benchmark in all 50 states.

4.5.2 Fixed model weights but time variation in coeffi cients

We implement BMA and BMS (DMA and DMS with αt = λt = 1) in a recursive way,

which means that some time variation in the coeffi cients will arise. We have also con-

sidered DMA and DMS with αt = 1 and λt ∈ {0.95, ..., 0.99}, so that the model weights

are fixed but the coeffi cients are allowed to change more rapidly. To be precise, we al-

lowed for model specific time-variation in λ following the procedure described in Section

3.1. We just briefly mention here that DMA with αt = 1 and λ
(k)
t ∈ {0.95, ..., 0.99}

gives an average MSFE ratio across the 50 states of 0.84, compared to 0.75 for DMA

with αt ∈ {0.95, ..., 0.99} and λ(k)t ∈ {0.95, ..., 0.99}, i.e. time-varying model weights are

advantageous.

4.5.3 TVP models

We have also compared with TVP models, which allow the marginal effects of the pre-

dictors to change over time but assume no model change. To analyze the performance of

the TVP model approach, we have to choose a particular model, which is assumed to hold

over time. That is, we have to choose one of the K = 1024 models and stick with that

model. If we allow all predictors to enter into the model specification, the results come

out almost as poorly as with the OLS kitchen sink approach. Thus, a TVP model with
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the full set of predictors seems to suffer from overfitting. However, simply removing some

of the predictors does not necessarily help. The reason is that housing markets are not

stable over time, which means that different factors drive house prices at different points

in time. Thus, if too few predictors are used in a given model specification, it might

lead to misspecification problems. In this respect, the useful property of DMA is that it

becomes possible to include a fair amount of house price predictors without running into

problems with overfitting.

5 Conclusion

This paper analyzes the ability to predict real house price growth rates in the 50 states

using DMA and DMS, which are new forecasting methods that allow for both the model

and coeffi cients to change over time. With DMA and DMS it is possible to gain insights

into which variables that drive house prices over time. We find that there is no single

variable that really stands out as being the most important. The best variables for

predicting house prices vary a lot over time and across states. We also find that allowing

for model change and parameter shifts leads to improvements in forecasting accuracy

relative to a wide range of benchmark models. We show that the states which have had

the most volatile housing markets are the states where model change and parameter shifts

are the most needed.
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Table 1. Forecast errors across states

Model Avg. Std. dev. Min. Max. # < 1

1. DMA 0.751 0.12 0.546 0.961 50
2. DMSC1 0.752 0.12 0.556 0.972 50
3. DMS 0.796 0.15 0.501 1.165 46
4 EW 0.831 0.24 0.548 1.657 44
5. BMA 0.858 0.14 0.548 1.177 44
6. BMS 0.903 0.15 0.591 1.188 35
7. AR1 0.957 0.12 0.599 1.228 27
8. ALL 1.208 0.95 0.606 5.565 31

The table shows summary statistics of MSFE ratios of various forecasting models relative
to the MEAN benchmark. Avg., Std. dev., Min. and Max. refer to the average, standard
deviation, minimum and maximum of the MSFE ratios across the 50 states. The "# <
1" column reports the number of MSFE ratios less than one. The out-of-sample window
is 1995:1 to 2012:4.
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Table 2. Test for equal predictive ability

AR1 BMS BMA EW DMS DMSC1 DMA

Alabama 1.02 0.89 0.91 0.92 0.86 0.80 0.81
(−0.70) (3.78) (3.06) (1.73) (2.49) (2.68) (2.69)

Alaska 1.01 0.81 0.82 1.64 0.88 0.86 0.84
(−2.72) (3.92) (4.01) (−1.87) (3.10) (3.06) (3.12)

Arizona 0.97 0.70 0.69 0.74 0.64 0.60 0.62
(1.17) (3.77) (3.61) (2.66) (3.16) (3.35) (3.44)

Arkansas 1.00 0.89 0.88 0.87 0.96 0.88 0.89
(0.16) (2.86) (3.13) (3.13) (3.02) (2.80) (2.83)

California 0.60 0.59 0.59 0.60 0.56 0.56 0.56
(3.06) (3.29) (3.35) (3.52) (3.27) (3.40) (3.40)

Colorado 0.97 1.12 1.09 0.77 1.15 0.92 0.90
(1.20) (1.37) (1.59) (3.44) (1.93) (2.64) (2.77)

Connecticut 0.91 0.79 0.82 0.63 0.65 0.92 0.65
(3.23) (4.04) (3.82) (4.95) (4.06) (3.72) (4.19)

Delaware 0.96 1.00 0.77 0.64 0.66 0.60 0.62
(2.74) (2.58) (3.38) (4.24) (4.21) (4.18) (4.20)

Florida 0.89 0.67 0.73 0.76 0.60 0.61 0.61
(2.20) (3.59) (3.72) (3.47) (3.46) (3.68) (3.64)

Georgia 1.01 0.91 0.85 0.73 0.57 0.69 0.55
(0.22) (1.49) (2.25) (2.91) (4.74) (4.70) (4.76)

Hawaii 1.00 0.82 0.74 0.73 0.69 0.57 0.55
(−1.51) (4.04) (4.18) (3.13) (4.70) (4.74) (4.76)

Idaho 0.92 1.18 0.87 0.78 0.80 0.72 0.73
(1.76) (0.42) (2.14) (2.45) (2.62) (2.68) (2.65)

Illinois 1.00 0.72 0.74 0.75 0.70 0.67 0.68
(1.81) (3.36) (3.27) (2.67) (2.85) (3.02) (3.07)

Indiana 1.23 1.04 0.99 0.99 0.99 0.95 0.95
(−0.94) (−0.07) (1.62) (1.34) (1.72) (1.78) (1.76)

Iowa 1.05 0.97 0.96 0.87 0.91 0.95 0.88
(0.35) (3.76) (3.50) (2.62) (3.42) (2.61) (3.22)

Kansas 1.16 1.19 1.18 0.96 1.12 0.94 0.93
(0.54) (0.52) (0.53) (1.67) (1.47) (2.25) (2.44)

Kentucky 1.01 1.04 0.98 0.86 1.16 0.97 0.90
(−0.45) (0.26) (1.39) (2.99) (0.38) (1.38) (2.32)

Louisiana 0.95 1.06 0.90 0.81 0.80 0.78 0.80
(1.40) (3.35) (4.00) (4.06) (3.83) (4.22) (4.16)

Maine 0.98 0.90 0.83 0.63 0.75 0.68 0.67
(2.25) (2.91) (3.09) (4.41) (4.00) (4.06) (4.06)

Maryland 0.73 0.65 0.61 0.62 0.59 0.58 0.58
(3.83) (4.62) (4.72) (4.53) (4.71) (4.74) (4.70)

Table continues on next page.
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AR1 BMS BMA EW DMS DMSC1 DMA
Massachusetts 0.79 1.02 0.95 0.62 0.77 0.72 0.70

(4.01) (4.39) (4.55) (4.95) (4.65) (4.50) (4.50)
Michigan 1.05 0.80 0.82 0.75 0.71 0.72 0.75

(0.62) (3.35) (3.11) (2.78) (3.39) (3.53) (3.57)
Minnesota 1.00 0.65 0.68 0.74 0.66 0.65 0.65

(0.60) (3.12) (3.07) (2.80) (3.20) (3.20) (3.14)
Mississippi 1.01 0.99 0.99 1.34 0.88 0.83 0.84

(−0.95) (1.66) (1.67) (−0.39) (3.00) (3.10) (3.10)
Missouri 1.00 0.86 0.83 0.83 0.75 0.80 0.81

(−0.14) (3.21) (3.07) (2.27) (2.96) (2.94) (3.00)
Montana 0.98 1.15 1.13 0.84 0.78 0.78 0.80

(1.63) (0.15) (0.08) (1.95) (2.96) (3.19) (3.19)
Nebraska 1.00 0.90 0.90 0.91 0.92 0.93 0.92

(−0.32) (2.51) (2.43) (2.72) (2.30) (1.93) (2.13)
Nevada 0.80 0.68 0.62 0.70 0.50 0.57 0.58

(2.99) (2.46) (3.13) (3.20) (2.94) (3.26) (3.30)
New Hampshire 0.85 1.00 0.97 0.67 0.74 0.75 0.72

(3.86) (3.61) (3.61) (3.61) (4.29) (4.16) (4.10)
New Jersey 0.74 0.91 0.76 0.55 0.63 0.60 0.60

(5.12) (4.60) (4.75) (5.04) (4.80) (4.82) (4.82)
New Mexico 0.92 0.93 0.93 0.81 0.75 0.74 0.77

(2.00) (1.94) (1.92) (2.95) (3.20) (3.21) (3.17)
New York 0.95 0.98 0.93 0.65 0.71 0.72 0.72

(3.01) (3.71) (3.74) (3.62) (4.69) (4.15) (4.12)
North Carolina 1.00 1.06 0.88 0.80 0.66 0.65 0.66

(0.51) (0.28) (1.92) (2.08) (2.57) (2.60) (2.59)
North Dakota 1.16 0.73 0.73 1.22 0.78 0.80 0.78

(−3.41) (5.31) (5.31) (1.68) (4.61) (4.36) (4.69)
Ohio 1.12 1.12 1.00 0.91 0.96 0.93 0.95

(−0.50) (0.96) (2.09) (2.13) (1.81) (1.73) (1.75)
Oklahoma 1.03 0.79 0.82 0.83 1.02 0.90 0.85

(0.69) (5.01) (4.73) (3.75) (2.66) (3.56) (3.96)
Oregon 0.84 0.81 0.78 0.80 0.71 0.71 0.73

(3.54) (3.85) (3.71) (2.20) (3.54) (3.64) (3.75)
Pennsylvania 0.98 0.94 0.87 0.68 0.80 0.73 0.74

(1.14) (2.92) (3.23) (3.82) (3.81) (3.90) (3.87)
Rhode Island 0.84 0.96 0.83 0.66 0.63 0.64 0.62

(3.91) (4.89) (5.01) (4.29) (4.89) (5.00) (4.96)
South Carolina 1.00 0.94 0.89 0.79 0.75 0.69 0.71

(0.24) (1.60) (2.73) (2.63) (2.43) (2.78) (2.81)
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AR1 BMS BMA EW DMS DMSC1 DMA
South Dakota 1.01 1.02 1.01 1.66 0.84 0.90 0.90

(−0.61) (2.48) (2.64) (0.54) (3.79) (3.35) (3.38)
Tennessee 1.01 1.14 1.11 0.93 0.99 0.86 0.88

(0.25) (−0.32) (−0.12) (1.54) (1.98) (2.24) (2.23)
Texas 0.99 0.74 0.87 0.78 0.76 0.76 0.76

(0.54) (4.23) (3.27) (3.37) (3.95) (3.96) (3.95)
Utah 0.90 1.03 1.08 0.81 0.99 0.95 0.96

(2.62) (2.40) (2.71) (3.00) (3.14) (3.01) (3.05)
Vermont 1.06 0.75 0.76 1.26 0.81 0.73 0.73

(−3.03) (4.24) (4.18) (1.18) (4.18) (4.45) (4.49)
Virginia 0.80 0.82 0.76 0.62 0.79 0.66 0.63

(3.05) (4.23) (4.31) (4.78) (4.69) (4.65) (4.59)
Washington 0.81 0.91 0.80 0.63 0.82 0.68 0.69

(3.50) (3.09) (3.25) (2.70) (3.29) (3.27) (3.28)
West Virginia 1.02 0.87 0.87 1.02 0.82 0.76 0.77

(−1.03) (3.05) (3.02) (3.14) (4.10) (4.95) (4.66)
Wisconsin 1.00 0.93 0.90 0.75 0.91 0.79 0.79

(−0.25) (2.38) (2.70) (3.79) (2.50) (3.23) (3.47)
Wyoming 0.82 0.63 0.62 0.69 0.68 0.61 0.62

(4.05) (3.92) (4.28) (4.07) (4.30) (4.77) (4.75)
U.S. 0.93 0.71 0.71 0.68 0.58 0.65 0.67

(1.76) (3.40) (3.42) (3.15) (3.37) (3.36) (3.33)

The table reports MSFE ratios of various forecasting methods relative to the MEAN
benchmark. Below the MSFE ratios are t-statistics from the Clark and West (2007)
test in parenthesis. We use Newey-West heteroskedasticity and autocorrelation consistent
standard errors. The out-of-sample window is 1995:1 to 2012:4.
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Fig. 1. Mean real growth rates, 1976:2-2012:4. The growth rates are annualized and
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Fig. 3. Mean real growth rates during the bust period, 2007:1-2012:4. The growth
rates are annualized and inflation-adjusted. Numbers beyond the left-hand side scale are
indicated by italic font face.
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Fig. 4. Mean growth in bust period against mean growth in boom period. The boom
period is assumed to be 1995:1-2006:4, while the bust period is assumed to be 2007:1-
2012.4. The growth rates are annualized and inflation-adjusted.
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Fig. 5. DMA vs. historical mean. The figure maps the MSFE ratio of DMA relative to
the historical mean. The evaluation period is 1995:1-2012:4.
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Fig. 6. DMA vs. AR1 model. The figure maps the MSFE ratio of DMA relative to the
AR1 model. The evaluation period is 1995:1-2012:4.
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Fig. 7. Cumulative squared forecast error difference. The evaluation period is 1995:1-
2012:4.
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Fig. 8. MSFE level vs. volatility. The figure plots the MSFE level against the volatility
in real growth rates, 1995:1-2012:4.
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Fig. 9. Forecasted vs. realized house price changes: Top four volatility states (left) vs.
bottom four (right; different scale). The evaluation period is 1995:1-2012:4.
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Fig. 10. Forecasted vs. realized levels of house prices: Top four volatility states (left) vs.
bottom four (right; different scale). The evaluation period is 1995:1-2012:4.
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Fig. 13. Median of posterior inclusion probabilities across states
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Fig. 14. Posterior inclusion probabilities of the four most important variables: Top four
volatility states (left) versus bottom four (right)
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